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as 1.5 cm per month. The removal practices are being 
continued presently with the funding support from 
MoEF&CC as a part of conservation and management 
of coral reefs. The invasion is now under control in 
Krusadai Island, although the alga is not fully 
eradicated. In Mulli Island, except off the northeastern 
side, the corals are not affected by invasion. The reef 
areas are being regularly monitored by the staff of the 
Forest Department and researchers of SDMRI-RRT.  
 

Ever since the exotic seaweed K. alvarezii was 
introduced into the GoM, print and television media in 
both English and the local language (Tamil) have 
played a leading role in making policy makers, 
administrators, researchers and fisher folk aware of its 
impact on coral reefs, and the associated biodiversity 
and livelihoods.   
 

Conclusion 
Regular manual removal and monitoring has helped to 
control the invasion of K. alvarezii at Krusadai Island, 
while in Mulli Island most corals have not so far been 
affected. The removal of the seaweed has also helped 
to control a further invasion at Shingle Island. In 
addition, the cessation of K. alvarezii cultivation for 
over 18 months, due to the occurrence of ‘ice-ice 
disease’ on the alga, has also helped in controlling the 
invasion. However, the rapid regrowth of the alga after 
removal poses a big challenge to conservation 
managers in protecting the corals in the GoM from the 
invasion of K. alvarezii, because regular removal and 
monitoring uses a considerable proportion of yearly 
budgets.  
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Marine cementation is an essential process for the 
stabilization of reef framework and resistance to 
mechanical erosion. It greatly controls carbonate 
platform geometry and the evolution of porosity in 
carbonate systems (Marshall 1983; Grammer et al. 
1999). Beyond contributing to early coral-reef 
diagenesis, cementation is believed to encourage reef 
development both by producing new available 
substrate for benthic colonization and by maintaining 
the rigidity of modern and ancient reef structures 
(Marshall 1983). 
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Marine cements have been well documented globally 
in numerous shallow reef habitats (see review by 
Macintyre and Marshall 1988). Contrastingly, there has 
been much less research regarding types and rates of 
syndepositional (geologically “instantaneous”) 
cementation in low-angle shelf  mesophotic coral 
ecosystems (d = 30-150 m) that potentially provide 
refugia for impacted shallow-water systems as well as 
new sources of biodiversity (see review by Kahng et al. 
2014). 
 
Methods 
Following a protocol modified by Grammer et al. 
(1999), in August 2011 4 nylon mesh bags (50 µm) 
were placed at 3 mesophotic reef habitats, the Primary 
Bank, the Hillock Basin, and the Deep Patch, as 
described by Weinstein et al. (2015), and 2 shallow-
water reefs, all in the northern U.S. Virgin Islands. At 
each site, 2 bags were attached to the seafloor and 2 
were hung ~1 m above. Bahamian ooids, selected for 
their uniform carbonate texture, were put into the 
mesh bags after being examined with a scanning 
electron microscope (SEM) to confirm the absence of 
previous cement (Fig. 1a). Half of the mesh bags were 
collected in May 2012 and the remainder in May 2013. 
Collected bags were washed with distilled water, 
dried, and sieved to isolate cemented clumps >1mm. 
Clumps were split with razorblades, mounted onto 
stubs, and sputter coated with palladium prior to SEM 
inspection for marine cement. When present, the 
dominant cement habit was recorded, and 
representative images (3-15 per stub) were taken.   
 
For each image in which aragonite fibrous cement 
occurred, the lengths of 5-10 of the longest "needles" 
were measured using Adobe Photoshop. Selection 
criteria included:  (1) the start and end points of the 
needle could be estimated (i.e., the view was not 
obstructed); and (2) the angle between the "needle" 
length and the two-dimensional photo plane was less 
than ~45°. These criteria ensured that all reported 
lengths were underestimated. Based on these 
measurements and the time since deployment, 
minimum values were computed for crystal growth.  
 
Results 
Ooids cemented into clumps after one year at all sites 
(Fig. 1b).  Four distinguishable cement types were 

identified:  (1) fibrous, isopachous (i.e., constant 
length) aragonite needles (Fig. 1c, d); (2) spheroidal 
clusters of needles (Fig. 1e, f); (3) stringy, elongated 
crystals embedded parallel to thick biofilm 
accumulations (Fig. 1g); and (4) anhedral, semi-equant 
aragonitic minimicrite (<1μm: Fig. 1h, i). There was no 
measurable difference in content between seafloor 
and elevated bags or between bags at shallow and 
mesophotic reef sites. Fine micrite cement was 
detected on samples collected after one year at all 
sites except Deep Patch; the elongated embedded 
needle cement was only found after two years on 
seafloor samples from the Primary Bank site. Besides 
forming between attached grains, cements also 
formed on unattached ooid surfaces, though only the 
fibrous needle cement completely covered grains (Fig. 
1c). Needle clusters periodically formed atop earlier 
episodes of cementation (Fig. 1e). Some aragonite 
needles formed along with organic biofilms (Fig. 2a, b) 
and microbial cells (Fig. 2c).  In cross-section, mini-
micrite-sized crystals were often observed (Fig. 2d, e), 
but it was unclear if these reflected an early cement 
stage or were part of the ooid interior surface.  
 
Fibrous aragonite needles were the most common 
cement type overall, though there were no consistent 
size or abundance trends between sites. The needle 
lengths for samples within mesh bags elevated above 
mesophotic reef sites averaged 5.11 ± 0.14 µm and 
6.43 ± 0.94 µm (standard deviation) after the first and 
second collections, respectively. After the first 
collection, needles from mesh bags on the substrate 
were found at 1 of the 3 mesophotic reef sites (the 
Deep Patch); average needle length was 2.34 ± 0.66 
µm. Sample bags were collected from the substrate 
surface at only two of the mesophotic sites during the 
second collection (the Hillock Basin site sample was 
not recoverable). Needle length averaged 5.69 ± 0.57 
µm. Although needle lengths did not increase 
significantly between the collection periods, 
qualitative analysis indicated a higher needle density 
at all second-collection sites. 
 
Discussion  
Results show that syndepositional cementation on 
gently sloping mesophotic coral reef habitats can be 
similar to that which has been found in other tropical 
marine  carbonate   environments  (e.g.  shallow   coral 
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reefs: Friedman et al. 1974, steep mesophotic reefs: 
James and Ginsburg 1979, deep platform margins: 
Grammer et al. 1999).  Needle lengths were  
comparable to those reported by Grammer et al. 
(1999). The depth at which these cements were found 
confirms that syndepositional cementation is not 
always influenced by wave conditions, as previously 
speculated (Marshall 1983; Macintyre and Marshall 
1988). Beyond implying the possibility that submarine 
cementation facilitates the maintenance of structural 
complexity within mesophotic reefs, the rapid 
syndepositional cementation described here supports 
arguments for geologically instantaneous stabilization 
of depositional carbonate slopes at mesophotic depths 
prior to the Holocene (Della Porta et al. 2003). 
Although no recognizable trends were identified within 

or between shallow and mesophotic reefs, results 
from this study still imply high potential for the 
preservation of sedimentary subfacies and 
subsequently the ability to identify habitat 
heterogeneity in ancient mesophotic reef deposits 
(Weinstein et al. 2015).   
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Figure 1. Photographs and scanning electron micrographs (SEM) illustrating syndepositional cementation. (a) Smooth 
Bahamian ooids prior to deployment. (b) Cemented ooid clumps. Scale is in millimeters. (c) SEM of ooid surfaces after 641 
days, 1 m above the seafloor at the Hillock Basin site. (d) Inter-fingering fibrous, isopachous aragonite needles between 
cemented ooids. See white box in c for location. (e) Spheroidal clusters of aragonite needles after 637 days on the seafloor 
at a shallow-reef site. White arrows indicate secondary cement nodules on top of first generation cement. (f) Fibrous 
spheroidal cluster cement between attached ooids. See white box in e for location. (g) Elongated cement crystals embedded 
in biofilm accumulations (parallel to ooid surface) after 625 days on the seafloor at the Primary Bank site. (h) Minimicrite 
cementation after 277 days on the seafloor at the Primary Bank. (i) Close-up of minimicrite cement between attached ooids. 
See white box in h for location. 
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Figure 2. Scanning electron 
micrographs of cement 
associations. (a) Ooids coated 
with fibrous aragonite cement 
and stringy extracellular 
polymeric substances after 
289 days, 1 m above the 
seafloor at the Hillock Basin 
site. (b) Close-up of sheet-like 
biofilms draped over needles. 
See white box in a for location. 
(c) Grain exposed 277 days, 1 
m above the seafloor at the 
Primary Bank site shows 
common association between 
cements and biological entities 
such as the diatom near the 
center of the field of view. (d) 
Ooid cross section covered 
with radiating fibrous 
aragonite cement after 635 
days, 1 m above the seafloor 
at the Deep Patch. (e) Close-up 
of the basal connection 
between fibrous cement 
(above) and minimicritic 
(below) along the ooid surface.  
See white box in (d) for 
location.   
 

 




